COMPASSCO, Components and Materials Performance for

Advanced Solar Supercritical CO2

power plants

The context

The goal of this R&D European-funded (H2O2O) project is to develop new materials withstanding very high temperature and pressure conditions occurring in a particle/supercritical-CO2 heat exchanger (HX). It fits to the Solar team products diversification strategy while contributing to the development of the next generation of Solar Receivers for CSP technology.

12 Partners

John Cockerill **Renewables (BE):** Pa-sCO2 HX design and business plan DLR (DE):

OCAS (BE):

Coatings and material coupons production Sugimat (ES): Industrial particle-sCO2 HX survey **Saint Gobain (FR):** New particles development and production **University of Birmingham (UK):** Development of metals **VTT (FI)**: Numerical simulations of particle and materials degradation dynamics OME (FR): communication

Project Description

John Cockerill Renewables scope encompasses the following activities:

- Design of both low- and high-pressure Pa-sCO2 HX
- Supervision of new materials development and integration to an industrial-scale HX design
- Design of lab scale Pa-sCO2 HX

Schedule

From 01/11/2020 to 31/10/2024

Project management - solar particle cycle modelling & particle degradation CIEMAT (ES): Particle degradation testing **CVR (CZ)**: Technology validation **DECHEMA (DE):** Interaction mediummetal **FZJ (DE)**: Material performance in

oxidizing and carburizing atmospheres

Budget

Total: 6M€ & JCR: 300K€ (100% EU funding)

johncockerill.com/energy

John Cockerill